I am heading to Warsaw to participate a couple of days in the WAW 2024 conference. This is my first trip to Poland in several years, and unfortunately it's going to be very brief.
My name is Mason Porter. I am a Professor in the Department of Mathematics at UCLA. Previously I was Professor of Nonlinear and Complex Systems in the Mathematical Institute at University of Oxford. I was also a Tutorial Fellow of Somerville College.
Friday, May 31, 2024
Wednesday, May 22, 2024
"Inference of Interaction Kernels in Mean-Field Models of Opinion Dynamics"
A paper of mine just came out in final form. Here are some details about it.
Title: Inference of Interaction Kernels in Mean-Field Models of Opinion Dynamics
Authors: Weiqi Chu, Qin Li, and Mason A. Porter
Abstract: In models of opinion dynamics, many parameters — either in the form of constants or in the form of functions — play a critical role in describing, calibrating, and forecasting how opinions change with time. When examining a model of opinion dynamics, it is beneficial to infer its parameters using empirical data. In this paper, we study an example of such an inference problem. We consider a mean-field bounded-confidence model with an unknown interaction kernel between individuals. This interaction kernel encodes how individuals with different opinions interact and affect each other's opinions. Because it is often difficult to quantitatively measure opinions as empirical data from observations or experiments, we assume that the available data takes the form of partial observations of a cumulative distribution function of opinions. We prove that certain measurements guarantee a precise and unique inference of the interaction kernel and propose a numerical method to reconstruct an interaction kernel from a limited number of data points. Our numerical results suggest that the error of the inferred interaction kernel decays exponentially as we strategically enlarge the data set.
Title: Inference of Interaction Kernels in Mean-Field Models of Opinion Dynamics
Authors: Weiqi Chu, Qin Li, and Mason A. Porter
Abstract: In models of opinion dynamics, many parameters — either in the form of constants or in the form of functions — play a critical role in describing, calibrating, and forecasting how opinions change with time. When examining a model of opinion dynamics, it is beneficial to infer its parameters using empirical data. In this paper, we study an example of such an inference problem. We consider a mean-field bounded-confidence model with an unknown interaction kernel between individuals. This interaction kernel encodes how individuals with different opinions interact and affect each other's opinions. Because it is often difficult to quantitatively measure opinions as empirical data from observations or experiments, we assume that the available data takes the form of partial observations of a cumulative distribution function of opinions. We prove that certain measurements guarantee a precise and unique inference of the interaction kernel and propose a numerical method to reconstruct an interaction kernel from a limited number of data points. Our numerical results suggest that the error of the inferred interaction kernel decays exponentially as we strategically enlarge the data set.